View metadata, citation and similar papers at core.ac.uk brought to you by ?fCORE

provided by ePublications at Regis University

Regis University
ePublications at Regis University

All Regis University Theses

Spring 2007

Model-Driven Software Development

Susan Minton
Regis University

Follow this and additional works at: https://epublications.regis.edu/theses

b Part of the Computer Sciences Commons

Recommended Citation

Minton, Susan, "Model-Driven Software Development" (2007). All Regis University Theses. 314.
https://epublications.regis.edu/theses/314

This Thesis - Open Access is brought to you for free and open access by ePublications at Regis University. It has been accepted for inclusion in All Regis

University Theses by an authorized administrator of ePublications at Regis University. For more information, please contact epublications@regis.edu.

www.manharaa.com

https://core.ac.uk/display/217364685?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://epublications.regis.edu?utm_source=epublications.regis.edu%2Ftheses%2F314&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.regis.edu/theses?utm_source=epublications.regis.edu%2Ftheses%2F314&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.regis.edu/theses?utm_source=epublications.regis.edu%2Ftheses%2F314&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=epublications.regis.edu%2Ftheses%2F314&utm_medium=PDF&utm_campaign=PDFCoverPages
https://epublications.regis.edu/theses/314?utm_source=epublications.regis.edu%2Ftheses%2F314&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:epublications@regis.edu

Regis University
School for Professional Studies Graduate Programs
Final Project/Thesis

Disclaimer

Use of the materials available in the Regis University Thesis Collection
(“Collection”) is limited and restricted to those users who agree to comply with
the following terms of use. Regis University reserves the right to deny access to
the Collection to any person who violates these terms of use or who seeks to or
does alter, avoid or supersede the functional conditions, restrictions and
limitations of the Collection.

The site may be used only for lawful purposes. The user is solely responsible for
knowing and adhering to any and all applicable laws, rules, and regulations
relating or pertaining to use of the Collection.

All content in this Collection is owned by and subject to the exclusive control of
Regis University and the authors of the materials. It is available only for research
purposes and may not be used in violation of copyright laws or for unlawful
purposes. The materials may not be downloaded in whole or in part without
permission of the copyright holder or as otherwise authorized in the “fair use”
standards of the U.S. copyright laws and regulations.

www.manaraa.com

ACKNOWLEDGEMENTS

This thesis is dedicated to my husband and children who, in many ways, had to persevere
with me through all of my educational endeavors. They truly are my inspiration. I would
like to thank my advisor Dan Likarish for all his support and guidance throughout my
Masters program and the thesis process. Two people deserving special mention are my
parents. They always encouraged me during school, and taught me to strive for

excellence in everything I do in life.

vi

www.manharaa.com

ABSTRACT

“Model-Driven Software Development — Techniques and Case Study”

Model-Driven Software Development (MDSD) is an emerging technology approach that
has potential to revolutionize the software industry. MDSD has the ability to both
increase software delivery velocity, while at the same time reduce complexity and reuse
software assets. Experts in the field believe that the MDSD approach helps to abstract
away the growing interdependencies of enterprise software development by use of
sophisticated tools, models, and automatic code generation. Through the use of Unified
Modeling Language (UML/UML2) and other related technologies, the models are
intricate enough to fully represent a system domain and then generate system code to
represent that system. The case study evaluates the key factors of velocity, modeling
complexity, code generation, and code completeness. Using both Model-Driven
Software Development and so-called traditional methods of development, both
techniques were applied against a real-world system for First United Methodist Church
Children’s Ministry. The two techniques were measured and critiqued for their effect on
the software development. Future direction of MDSD and potential impacts are
presented.

vii

www.manaraa.com

TABLE OF CONTENTS

INTRODUCTION 1
MODEL-DRIVEN SOFTWARE DEVELOPMENT 4
MDSD DiSEIIEA. ..ottt 4
MDSD IREEFDFOIE. ...ttt ettt et 11
MDSD APPLIEDuuciiiiiiiiinneinneiceeicseicsetesssessssessssessssesesssssssssssssssssssssssesessssssssssssassssssssssssessassssnes 12
BACKGFOUNA. ...ttt ettt 12
FFAMEWOTE ...ttt e et e et e ettt e et e e 13
COMSIFAINLS ..o eeeiee ettt e e e e ettt e e e e ettt e e e e e ettt et e e e e e e e antabeeeaeeeaanes 15
RESUILS ...ttt e et e et e e et e e et eeenraaas 15
MDSD ANALYZED 17
CFIHICAL ASSESSMICNL ...ttt et e et e et e e ettt e e e at bt e e e abt e e e st e e e e ensaeeeennneeas 17
CONCIUSTONS ...ttt e e et e et e e et e e e ettt e e e st e e e et eeeeensseaeensaeeens 19
FUIUTE RESEATCH. ...ttt ettt ettt e et e e ettt e e e e naaeeeennneeas 20
ANNOTATED BIBLIOGRAPHY 21
REFERENCE LIST 25
GLOSSARY cuueiitiiiuniiseicsntinneicseiessstessstesssessssesessssessssssssssssssssssssessassssssssssssssssssssssssssssss 27
APPENDIX A — MDSD APPROACH .28
APPENDIX B — CASE STUDY NARRATIVE 32
BUSTNESS PrODIOHI. ...ttt e e e e nneeas 32
USEF GOGLS/PUTPOSE ...ttt ettt ettt e 32
BUSTNESS TIMPACE ...t et 33
Vision — Approaches/SOIULIONSccccouiiriiiiiiiiii ettt 33
APPENDIX C — CASE STUDY EXHIBITS 34
BUSTNESS MOAELS............ooooiieeiie ettt e et e et e e e e e naeeas 34
DALA MOGELS ... e e enneeas 35
User EXperience MOCKUDSc..cccuiiiuiiiiiiiii ittt ettt 36
APPENDIX D — MDSD MODEL EXHIBITS......ucoonviiniinneinneinneicseicseecssnecsssessssessssesessesessssessssessns 38
RUP SE CONLEXE MOTEIS..............oooeiiieeieeeeee ettt e et e e e e 38
SOFIWATE MOUEIS............cooiiiiiiii ettt et 41
APPENDIX E — CASE STUDY METRICS 45
EffOFt THACKITG. ...ttt 45
viil

www.manaraa.com

LIST OF TABLES

Table 1: Model-Driven Software Development value proposition (Stahl, Voelter, 2006) .5

Table 2: MDSD LIMITAtIONScccuveiiriieiriiiieiiieeniiee it eitee ettt e siie e st s e s e 10
Table 3: Case StuAY SETUP ..cceoeiiiieiiiie et e e e e e e 14
Table 4: Case Study Result SUmMmAarycooooeiiiiiiiiiiiiice e 20
Table 5: MDSD - RUP SE approach (Balmelli, 2000)..........ccccceevviiiniiiiniiiiniieeniieee 28
Table 6: MDSD - Agile approach (Bettin, 2004b) (Stahl, Voelter, 2000) 29

LIST OF FIGURES / EXHIBITS

Figure 1: MDSD components (Eclipse, 2000).........ccccueiiriiiiniieiniieiiee e 5
Figure 2: Sample DSL Transformation Rule (SEL 2006)ccoouiiiniiiiniieiniieenieeeee. 7
Figure 3: MDSD - RUP SE diagram (Balmelli, 2006).........ccooouveiriiiiniieiniieiieeeieeeee, 8
Figure 4: MDSD - Agile Diagram (Bettin, 2004C)covviieiiieiiiiieiiieeiee e 9
Figure 5: Entity Relationship Diagram............cccooviiiiiiiiiiiiiiiiieiiicccee e 34
Figure 6: Logical Data Model............cooiiiiiiiiiiiii e 35
Figure 7: Physical Data Model - Constituent related tablescccooeeeriieiniieinnneennne 35
Figure 8: Ul Mockup - Main MENU.........c.ceiiiiiiiiiiiiiieiie e 36
Figure 9: Ul Mockup - COnStitUent SCIEEM.......ccovuveieriiiieriiieeiiieeniiieeriee et 37
Figure 10: Use Case - OVerall CONtEXt.......ccoruiiiriiiiniiieniieeniieeniieesie e 38
Figure 11: Use Case - Manage <<CONStIUENE>....cccuiiiiiiiiniiieniieenieeesieee e 39
Figure 12: Analysis Diagram: Manage Constituent — Class Participants............ccccee..... 40
Figure 13: Analysis Diagram: Manage Constituent — Sequence Flow.............c..ccocueeenee 40
Figure 14: PIM - Presentation Layercoovuieiiiiiiiiiiiiiieeniieeeiieeeeee e 41
Figure 15: PIM - BUSINESS LAYETcccuviiiiiiiiiiiiieiiiceiiic e 42
Figure 16: PIM - Data Access Layer........ccccovvuiiiiiiiiiiiiiiieceiice e 43
Figure 17: PIM - DOmain Layer........cccccoiiiiiiiiiiiiiieniieeiieeeee e 44

ix

www.manaraa.com

INTRODUCTION

The software industry represents a significant cross-section of our global
economy. As software delivery demands increase, so do development costs. Complex
software architectures and remote development teams can lead to delivery challenges
such as code duplication, productivity losses, and implementation uncertainty. The key
to improving software delivery in the future is to significantly increase system clarity and
delivery velocity while at the same time driving down both development complexity and
costs. Model-Driven Software Development (MDSD) can accelerate software delivery
and reduce development costs by supplying concise domain models, reducing
complexity, increasing system component reuse, and automatically generating code.

In the next few years, many challenges lie ahead in the software industry. The
largest challenge is growing software complexity. Highly complex architectures require
extremely skilled engineers. The high cost of these skilled software engineers is
compelling companies to cut corners, like understaffing or off-shoring which contributes
to project complexity. Additionally, complex architectures require prolonged learning
curves and ramp-up time. All of these factors lead to lower productivity and longer
software cycles. Contrary to that, business expectations are now focused on quicker
software deliveries with higher quality and lower costs. All of these trends are paralyzing
traditional software deliveries.

Model-Driven Software Development offers a potential solution. It is defined as
“a new software development paradigm for distributed project teams involving 20+
people. [...] MDSD aims at developing software from domain-specific models. Domain

analysis, meta modeling, model-driven generation, template languages, domain-driven

1

www.manaraa.com

framework design, and the principles for Agile software development form the backbone
of this approach.” (Bettin, 2004a). In a nutshell, MDSD is a new way to develop
software by using a model centric approach, not code centric. Generated code becomes
an artifact from the modeling and design stages. An engineer programs using models,
not software languages.

MDSD has two primary goals. The first is to “improved manageability of
complexity through abstraction. The modeling languages enable ‘programming’ or
configuration on a more abstract level.” (Stahl, Voelter, 2006). The second is to
“increase the development speed through automation: runnable code can be generated
from formal models using one or more transformation steps.” (Stahl, Voelter, 2006). The
basic concept is called forward engineering: producing code from abstract, human-
elaborated specifications (Wikipedia, 2006).

Model-Driven Software Development has the potential to revolutionize software
engineering. MDSD separates the business and application knowledge from the
underlying solution technologies - no more backward compatibility or new technology
churn issues. From CIO’s, to system architects/designers, to software engineers, all can
begin envisioning business systems through architectural domain models instead of
segregated application systems. Domain modeling leads to unified and standardized
system implementations, as well as increasing software modularity and reuse.

The significance of MDSD is simplicity: addressing software complexity through
abstraction using models. If you reduce the complexity, you reduce costs and increase

delivery velocity.

2

www.manaraa.com

MDSD faces industry inertia. The transition to Model-Driven Software
Development is similar to the transition assembler programmers made when moving to
third-generation languages such as COBOL. The 3GL’s insulated developers from the
instruction sets of specific processors and memory. (Bettin, 2004b). It was a leap of faith
for programmers to no longer control machine level code. But in contrast, “we are all
model-driven developers. When we write programs in Smalltalk, Java, or C#, we don’t
expect it to execute directly. We expect it to be transformed into the language of some
machine that can cause our model [program] to do its job.” (Mellor, Clark, Futagami,
2003).

In order to demonstrate the MDSD paradigm, the applied study utilized the
Model-Driven Software Development approach. The study encompassed the modeling,
design, and construction of a church ministry tracking system to demonstrate MDSD
techniques. Effort measurements and observations were logged throughout the
development of the system.

The thesis is structured into three major sections: framework, execution, and
analysis. The first section provides context for the topic of Model-Driven Software
Development techniques, impacts, and expert opinions. The next section addresses the
actual MDSD case study. It describes the system background, the approach, and outcome
using MDSD tools and techniques. The last section examines the case study, focusing on
key issues: complexity, delivery velocity, code generation, and reuse. It provides a
discussion on issues, an evaluation of Model-Driven Software Development, and the

potential impact on software deliveries.

3

www.manaraa.com

MODEL-DRIVEN SOFTWARE DEVELOPMENT

MDSD Distilled

Model-Driven Software Development is a new approach to software development
that aspires to develop and generate software from domain-specific models. What does
that mean? From a simplistic perspective, it means that software engineers will program
using detailed models to represent the system rather than coding with computer
languages. But MDSD goes much deeper than that. It consists of highly focused model
development involving domains, transformations, domain template languages, and
eventually code generation. MDSD origins began in domain engineering or “software
product line engineering, which is the discipline of designing and building families of
applications for a specific purpose or market segment” (Bettin, 2004b). Domain
engineering advocates that productivity gains can be achieved during system
development when developers leverage the same domain-specific knowledge.

Because MDSD is a relatively new discipline, there are few recognized experts in
the MDSD field. Jorn Bettin and Markus Voelter are the primary published experts.
Together, they are published or are quoted in almost every MDSD textbook and article,
including this paper. Most of the recent advancements in the field are also authored by
them.

So, what is the promise of MDSD? According to Voelter, the goals and value

proposition of Model-Driven Software Development are listed in table 1.

4

www.manaraa.com

Table 1: Model-Driven Software Development value proposition (Stahl, Voelter, 2006)

MDSD Goals

software form

and best practices

1) increase your development speed

2) enhanced software quality through the use of automated transformations and
formally-defined modeling languages

3) implementation aspects can be changed in one place

4) higher level of reusability and makes expert knowledge widely available in

5) improved manageability of complexity through abstraction [models]

6) building a productive environment through the use of process building blocks

Model-Driven Software Development is rooted in very recent technologies.

MDSD stems from object oriented analysis and design. Most of the modeling is based on

UML/UML2, MOF, and OCL technologies. The methodologies are centered on Agile or

RUP SE, and the transformations and interoperability use XMI.

See figure 1 for a

simplified overview of some of the components involved with MDSD.

Figure 1: MDSD components (Eclipse, 2006)

%o | &a xv

L

Business Sofhware b ade | hlad el
hodeling Ml delin g Walidation Obsern ation
I I I] =
- U oEn
ol Model Bus == [£

I I

—]
1
AT
R g
hadel fulad &l Code
Fepositary Transformation

Generation

:U: Orchestration

)

[racumentation
eneration

5

www.manaraa.com

Models specifications were standardized by the Object Management Group
(OMQG) for Model Driven Architecture (MDA). Both MDA and MDSD support the use
of models for system development. The primary distinction between MDA and MDSD is
that MDA is a set of guidelines for models; MDSD represents the entire software
lifecycle from model to code generation. “[Model Driven Architecture] MDA is not to
be confused with Model-Driven Development (MDD), also known as Model-Driven
Software Development (MDSD). MDD is an approach to software development where
extensive models are created before source code is written or generated. MDA is the
OMG implementation of MDD. The MDA concept is implemented by a set of tools and
standards that can be used within an MDD approach to software development.” (SEI,
2006). So, MDA is a specialized subset of MDSD. The original MDA standard does not
directly address the transformation and generation phases. OMG is addressing them in a
separate initiative called QVT. For MDSD, domain-specific transformations and
generation are vital stages.

Because MDSD is based on new technologies and new approaches, it also
introduces new terminology. Domain Engineering models the overall business context
and Application Engineering models the actual platform and system context. The latter is
much closer to traditional UML modeling. Domain-Specific Language (DSL) is the
template modeling language, semantics, and syntax used for expressing key aspects of the
domain. See figure 2 for a sample of DSL. Platform Independent Model (PIM) is the
model describing the business logic, undiluted by technical concerns. Platform Specific

Model (PSM) is the model used to describe the actual platform implementation.

6

www.manaraa.com

Figure 2: Sample DSL Transformation Rule (SEIL, 2006)
if (UMLClass) {

create Java class named <UMLClass.className>Bean.java

create methods in <UMLClass.className>Bean.java for each operation in UMLClass
create attributes in <UMLClass.className>Bean.java for each attribute in
UMLClass

create Java class named <UMLClass.className>.java for remote component
interface

create Java class named <UMLClass.className>Home.java for remote home interface
create Java class named <UMLClass.className>Local.java for local component
interface

create Java class named <UMLClass.className>LocalHome.java for local home
interface

Model-Driven Software Development tools and techniques are the key to the
entire MDSD approach. The tools drive the iterative development processes and act as a
repository for the domain knowledge. MDSD also has an established set of guidelines
and processes for producing model to code transformation. There are basically two
flavors, RUP SE and Agile.

Tools are the foundation for MDSD. In order to fully perform Model-Driven
Software Development, there are three tool types you need — meta-modeling tool,
specification tool generator, and model-based template interpreter and generator. There
are many commercial tools available, but many of them are very immature and quite
expensive for the average company or entrepreneur. Most tools range from $9,000 to
over $250,000. Most open source tools are listed on the Generative Modeling
Technologies (GMT) website (http://www.eclipse.org/gmt). The most notable tool suite
is from Jorn Bettin called openArchitectureWare (0AW). Other vendors offering MDSD
tools are Rational Software (Rational Software Architect — RSA), Gentleware (Poseidon),

and Borland (Together Control Central). Some tool offerings represent a suite of

7

www.manaraa.com

(http://www.eclipse.org/gmt)

integrated technologies, whereas others are suites of pieced together components to fulfill
the entire MDSD modeling need. XMI acts as the interoperability backbone between
tools.

The MDSD RUP SE approaches modeling from a system perspective. This
approach models the system from a top-down, incremental perspective with constant
refinement of model granularity at each subsequent system level. See figure 3 for the

RUP SE architecture framework and table 5 for the RUP SE process flow.

Figure 3: MDSD - RUP SE diagram (Balmelli, 2006)

Model ¥Yiew points

Worker Logical Information Distribution Process |Geometric
Context Fole definition, Use case Enterpnse Dormain- |[Domain-
activity diagram data view dependent [dependent
Model Levels rnodeling specification ViE WS viEws
Analysis Partitioning [Product logical Product data Product Product Layouts
of systern decomposition conceptual localty wiew iprocess
schema g
Dresign Cperator [Software Product data ECM Timing [[T
instructions lcomponent schema (electronic diagrams [(mechanical
design contal computer-
redia) design assisted
design)

Irmplemertation Hardware and software configuration

The Agile approach is more iterative in nature, and the steps are intentionally
loosely coupled to allow for parallel and cyclical development. See figure 4 for the Agile
MDSD flow and table 6 for a summary of the process flow steps.

So what kind of impact might one expect from MDSD? According to
studies conducted, MDSD techniques have the most significant impact on development
velocity. The Middleware Company performed a study in 2003 and claimed that a 35%
reduction in development time was realized when employing MDA techniques

(Middleware, 2003).

8

www.manaraa.com

Figure 4: MDSD - Agile Diagram (Bettin, 2004c)

— B— Process_&
et Fresd By agﬂ Grganization
/f’ .. Extisctine Shopping i
j Lt in!tsstwu!m Basket 3
! mod e
'f i i Tool
. tanafiz from B
! ,’:? ”::" Beops Sfmwg j w‘/w_ﬁ-w Architecture
T mrs#w Duzl-Traok piSIISRY
i Devalopment ammsctc f e “? syl wmpiites
‘\ i Moguler. lgnprs Concrele f
‘ f Tyntax
i - Validsts Harations Aulomalad ¥

nnnnnnnn

-u“...\.m..,‘

/

o et ww?i,_-l Foreal Rat&l’aﬂﬂ&
"* Arghitsciure- iktabad

cmtic ummmu {#
Ys& Malamadsl (P}

B

?rm!mb}m

o -\ M“‘“--w___m | Application
5
E : {'&;" e, S | Platiorm
P S Developmen
Beeshax. = e Cooking cods
Targs! Pialform : e ma
N g
: g _
Technieal ;;;e;gi pensdic Saparate Ganersled
Bibdamamns Gﬂl‘ﬂ Source ip} Fom angd Non-Gesnarated Cods
- i opaciy Decriplive X
W OSAL-DITeEn N !
: fisgration . gadar i
gEEy Gatewsy pimpites #YRIage : i
e | can M e i
Madel Laysr P} T’*;fé;ﬂﬁ ‘}
y Genatator- b a e G
4 fased S0P _ Sgiiava I i)
g Bullda Rencamalion P Runlime
\ Worknw {F) Briggs (7}

They stated that slightly higher effort was required during the first modeled application
due to ramp-up, but significant velocity gains were experienced during subsequent
applications on the same platform. Another study conducted by Jorn Bettin (Bettin,
2002) developed a small ecommerce application using three methodologies: 1) manual

coding/no modeling, 2) UML-based coding, and 3) MDSD and domain-specific

modeling. Using the manual coding technique as the baseline, the results indicated that

9

www.manharaa.com

the UML-based coding approach actually increased overall effort by 5%, and the MDSD
saved an astonishing 52% over manually coding the application.
MDSD is revolutionary, but critics have raised many concerns surrounding

MDSD limitations. See table 2 for a brief summary.

Table 2: MDSD Limitations

1) Idealistic: Full MDSD approach may be too idealistic for some real world
artifacts that are seen as necessary. It supports implementation of models to
executable code, but does not support database schema, code tuning, etc.
(Wikipedia, 2006).

2) Large Investment: Model driven tools and technology involve a large initial
investment in configuration and potential transformation modification. It is
not well suited for one application being deployed on multiple platforms, or
just a single application. (SEI, 2006).

3) Specialized Skill set: Engineers are required to have a high level of expertise
as modelers and architects. They are scarce market commodities (Wikipedia,
2006).

4) Lack of Standards: MDSD lacks mature and practical standards for model
transformations (Bettin, 2004b).

5) Tool Maturity and Interoperability: End to end MDSD requires a suite of
tools. Many of the tools are too immature to offer complete transformations.
Most of the tools do not have standardized interoperability (Cook, 2004), do
not support exchange markings and transformations (SEI, 2006), and are
restricted to one level of transformation (SEI, 2006). The lack of mature and
adequate tooling support could become an adoption barrier to model driven
techniques. (SEI, 2006).

6) Code Manageability: A modeler builds a model without the code
management in mind. So the generated code is often not readable or
maintainable. (Mellor, Clark, Futagami, 2003)

7) Resistance: There is a lot of industry inertia to overcome in order for MDSD
to be adopted.

10

www.manaraa.com

MDSD Interpreted

On the surface, Model-Driven Software Development seems like a brand new
paradigm. But under the covers, it is shifting the iterative development process from
UML/prototypes/coding over to abstraction/modeling/generation. In essence, it pushes
the development effort further up in the lifecycle. This shift alone could save money due
to the early detection of software issues.

There’s no doubt that MDSD is a leap of faith for software engineers. To release
control of code, and exist in only a model capacity, is unnerving to most developers.
Models have been viewed strictly as initial brainstorming and documentation up to this
point. This mindset is also the largest acceptance barrier for MDSD.

MDSD advocates abstraction - the ultimate solution to reuse, standardization, and
cost reductions. Continuous abstraction leads the ability to represent complexity in a
much more concise manor. Abstraction supports design patterns, templates and other
generally accepted software practices. Domain Specific Language (DSL) takes
abstraction one step further by capturing the unique needs of a domain and encapsulating
into domain semantics.

The models provide much needed context for software engineers. Today, models
are viewed as simple documentation. In the MDSD paradigm, models are at the heart of
software engineering. The models represent how the system functions, integrates, and
operates. In addition, the models drill down to low level implementation details to clarify
implementation details and data attribution.

The maturity of MDSD is its own impediment. The prerequisite knowledge

required to process MDSD represents a barrier for most developers. Deep and intricate

11

www.manaraa.com

UML/UML2 knowledge is required to perform MDSD proficiently. The MDSD
techniques are not agreed upon by experts in the field, which leaves developers thrashing
and searching for guidelines. The tools are complex and require large learning curves.
Many of the tools are in developmental stages waiting for standardized techniques.

The biggest benefit of Model-Driven Software Development is the integration of
the analysis and design processes directly into the end-to-end development process.
Analysis, design and code flow seamlessly. “Model-driven development is still not
widespread, but the potential is large. A software development environment with off-the-
shelf models and mapping functions [...] will change the way in which we build systems.
Instead of building and rebuilding systems as the application or the technology
infrastructure changes — an expensive proposal to be sure — we’ll select models, subset or
extend them, then weave them together to build the system.” (Mellor, Clark, Futagami,

2003).

MDSD APPLIED

Does Model-Driven Software Development truly increase delivery velocity and
reduce complexity? A case study was conducted to assess the engineering impacts
associated with a real system using both traditional UML and OO coding, and MDSD
system methodology. The applied study compared and contrasted the methodologies
from three primary viewpoints: delivery speed, system modeling complexity/abstraction,

and code generation.

Background

The case study focused on a tracking system for First United Methodist Church

(FUMC). The church needed a system to manage organizational information for the

12

www.manaraa.com

Children’s Ministry. (See appendix B for more details.) Most of their informational
needs centered around three areas: recording child demographic data, tracking attendance
to church sponsored activities, and developing educational curriculums for Sunday school
and confirmation.

The FUMC technology requirements were straight-forward. Most of the user
interactions were simple data entry screens and event management. The customer’s
deployment requirements included a stand-alone application, multiple data entry stations,
and a database backend. The church primarily operates desktop applications using
Microsoft technologies and MS Office desktop suite. In-house applications were
developed in C# or Visual Basic to leverage Microsoft licensing. MS Access was the
primary database, and common data was stored on a network LAN for backup purposes.
The case study was developed on Microsoft technologies and C# language.

The actual case study focused on a specific piece of the entire system. The rollout
plan was intentionally planned in phases in order to prove the initial technology, the
MDSD approach, and then the incremental deliveries to follow. The initial phase, and
the focus of the thesis work, was narrowed to the subsystem which focused on the
recording of child (called Constituents) demographic data. Due to the nature of this
application, the two most important architectural layers were the presentation layer (user

experience) and the domain layer (persistence).

Framework

The case study was conducted like an experiment. See table 3 for the experiment

framework. The subsystem for child demographic data was fully created using both

13

www.manaraa.com

traditional UML with C# manual coding and MDSD techniques with generated code.

The case study “controls” were the UML models and the methodology approach.

Table 3: Case Study Setup

Experimental Design

Title

Model-Driven Software Development Techniques

Problem Statement

1) Enterprise software is growing in complexity

2) Architecture intricacies create longer software cycles and drive up costs
3) Traditional development methodologies lead to silo development efforts

Hypothesis

MDSD can speed up software delivery while reducing costs and increasing

software reuse

Experiment Procedures

- Materials

1) Software system for FUMC Children's Ministry to track Constituent

demographic data

2) MDSD technique

3) Poseidon 5.0

4) UML/UML2

5) Visio 2003

6) Visual Studio 2005 / C# code

- Controls

1) Business models and Data models
2) RUP SE approach

3) UML model granularity

4) N-tier architecture layers

- Variables

1) Development Tools

- Poseidon for MDSD development

- Visio 2003 and VS2005/C# for traditional development
2) Code Generation

Data Collection

- Metrics Track development effort by phase
- Observations Code quality/completeness
Modeling complexity
MDSD Conclusion Software Velocity

Software Complexity
Software Reuse
Overall

The models were developed with roughly the same granularity. RUP SE was the

methodology, with some MDSD Agile techniques used as augmentation. The study

“variables” were the tool suites and generation techniques. The tools were Visio and

14

www.manaraa.com

Visual Studio C# for the traditional approach, and Poseidon 5.0 for the MDSD tool. The
“results” were measured in terms of code and time effort. Generated code comparison
was done using the model’s domain objects. Code completeness was compared using
both C# and Java since Poseidon was more Java compatible. The estimated percentage
code complete was based upon previous C# coding experience. The tracking metrics
measured the execution of each development phase within RUP SE. The expectations
from the applied study were to observe how MDSD techniques impact software delivery

and code deliverables.

Constraints

During the setup for the applied study, tools proved to be a significant roadblock.
Many MDSD tools were evaluated: System Architect (Rational), eGen (Gentastic),
openArchitectureWare (GMT), Visio Enterprise Architect, and Poseidon (Gentleware).
Most of the MDSD tools on the market produce Java code; none of the evaluated tools
could produce C#. Poseidon was the ultimate choice because it had the ability to produce
template based C# code. It can produce full Java code, which was used for side-by-side
code comparison. UML2.0 and OCL could not be fully exploited due to the in-depth

knowledge required for those technologies within the tools

Results

The study’s results were surprising. The modeling effort was very inconsistent.
In the traditional coding mode, the new models and code base were pulled forward from
an existing infrastructure and application. The traditional UML modeling was relatively
quick, basically refactoring of objects. Domain Specific Language (DSL) was not

available in traditional UML models. Platform Independent Model (PIM) and Platform

15

www.manaraa.com

Specific Model (PSM) were modeled using Visio based notation, which is not .NET
compatible.

With the MDSD approach, the study attempted to export XMI (from the
traditional models) to use for infrastructure baselining, but that capability was not
available using Visio. The models started from scratch. DSL was not utilized because
the functionality could not be located within the Poseidon tool. PIM context and analysis
diagrams were slow, but the design level modeling went very fast. Much of the Poseidon
tool is tailored around class diagramming. Due to the fact that Poseidon is not .NET
platform compatible, the PSM model could not be developed or transformed. Some J2EE
functionality was exploited due to better compatibility within Poseidon. Overall, the
MDSD modeling effort was made much more difficult due to the tool deficiencies. The
UML complexity involved to transform granular MDSD models to code was also more
difficult.

The tracking metrics demonstrated increased velocity. For the entire system
vertical slice, the traditional approach took 24.25 development hours of effort for models
and manually created code. The MDSD approach was a total of 11 development hours,
representing about a third of the original effort. Most of the MDSD gains were realized
in the coding phase. Traditional coding took 12.25 hours, whereas MDSD code
generation was 1.5 hours. The traditional coding approach would have been more than
triple in effort had it not been for the pulling forward of an existing infrastructure and
code base. So, the net gains would have been even greater.

Code completeness was contrary to the generation results. The generated C# code

was simply stub code; Java code was a bit more robust, but would require much more

16

www.manaraa.com

UML modeling to generate more robust code. Since UML diagrams were one of the
study’s constants, the models were left relatively the same, even when generating Java.
So, some of the code completeness deficiencies were due to the UML modeling depth.
The C# code was about 25% complete for the domain classes, and only 10% complete for
the remaining system classes. The Java code was better. It was near 30% complete for
the domain classes and 15% complete for the remaining system classes. Performing a
simple extrapolation given the code effort and the code completeness, the total coding
effort would have been somewhere near 6 hours for more robust domain classes. This
represents half the traditional coding effort. Thus, the case study approximated the same

results as Jorn Bettin’s code study (Bettin, 2002).

MDSD ANALYZED

Critical Assessment

Does Model-Driven Software Development live up to the hype? A brief SWOT
analysis (strength-weakness-opportunity-threat) critiques the MDSD approach.

MDSD has two primary strengths. Complexity is reduced through better model
abstraction and encapsulation. This leads to higher system component visibility and
reuse. The case study displayed trends that indicated that MDSD would identify reuse
opportunities much more quickly than traditional coding methods. Automatic code
generation increases delivery and creates code uniformity. However, the case study also
demonstrated that much of the code still has to be handcrafted due to the tool
deficiencies.

MDSD weaknesses include a highly specialized modeling skillset, tool

immaturity and difficulty of use, and code refinement challenges. The UML, UML2.0

17

www.manaraa.com

and OCL depth of knowledge required to manipulate the models properly to produce the
desired code behavior is significant. It could potentially require years of experience to
get code to generate precisely from well-formed MDSD models. Until colleges and
universities change their focus away from traditional methodologies and coding, people
will not be properly tooled for MDSD modeling.

The tool maturity was the most difficult part of the case study. The tools are
large, and somewhat difficult to understand and operate. Some of the core concepts like
DSL, transformations, tool standards, and XMI export are not yet fully supported. Lastly,
the level of code granularity is not mature. As an example, none of the tools had a way
to specify screen layouts and other human factors requirements. In the author’s opinion,
these all represent significant roadblocks and financial impacts for software companies.

There are many opportunities for MDSD. First, MDSD modeling gives visibility
to the enterprise software implementations. Engineers can leverage all previously
modeled systems and designs by simply reviewing the model abstractions. The net is
increased software velocity and design consistency. Second, the code produced from
MDSD generation is highly standardized and very uniform. That translates to lower
maintenance costs because developers can more quickly identify with the code base.
Last, the conversion of developers from procedural languages to object oriented
technologies can be bridged by using MDSD.

Threats represent a major area for MDSD. First, the inertia that stands in front of
this approach is gigantic. The resistance to model centric engineering both inside and
outside the software industry is almost insurmountable. Today’s mainstream workplace

mindset equates coding to productivity, not models. Without the tools generating robust

18

www.manaraa.com

code, MDSD will never be fully adopted. Developers will fallback to traditional coding
to get their deliverables, and leave MDSD modeling stranded. Reverse engineering
techniques could help, but again the tools need to be mature enough to properly represent
the original source code. The second major threat to MDSD is the “all or nothing” aspect
to the approach. Model-driven software development doesn’t lend itself to hybrid
enterprise solutions — some systems traditional, some model driven. This negates some
the MDSD reusability strength. System assets that are not visible to the models cannot be

leveraged.

Conclusions

Can Model-Driven Software Development provide reduced costs while at the
same time speeding up software delivery? In the author’s opinion, Model-Driven
Software Development is the correct vision for the software industry, and a natural next
step in software progression. It’s not idealistic, it’s real. Engineers and customers will
ultimately see benefit from simplified systems and consistent system behaviors. It will
speed up software deliveries. But, it is also the author’s opinion that MDSD will not
receive mainstream adoption. The transition will be too slow due to the developer
resistance and immaturity of tools. Software engineering should be enabling for
corporations, not inhibiting. Speed to market and development responsiveness are too
large of expectations in most corporations to overcome the MDSD perceptions.

The case study was the key contributor in reaching this conclusion. See table 4
for a summary of the case study summary. It confirmed that MDSD is good, but still has
a lot of room for advancement. The case study demonstrated the code delivery velocity,

but the tradeoff was an increased effort surrounding models and code management. More

19

www.manaraa.com

fully defined UML models would have certainly altered the results of the case study for
Java code generation, but not in C# code. The ramp-up time required for full MDSD
modeling is significant. Cost savings would only be realized in the long run. Overall, the
case study did not fully meet the original thesis expectations. However, it did clarify the
current conditions and future direction of MDSD.

Table 4: Case Study Result Summary

MDSD Software Velocity
Summary
Pros Cons
1) faster code delivery 1) longer modeling cycles
Software Complexity
1) less complex to create code 1) less code complete
2) representation of domain specific | 2) higher modeling complexity
need through DSL 3) higher prerequisite modeling

3) coding abstracted away through knowledge required
models/code generation
4) nice visualization capabilities

Software Reuse

1) able to leverage modeled classes 1) must model everything in order to
multiple time have visibility

Overall
1) Conceptually much cleaner 1) Tools are very immature, causing
2) Clear abstract and reuse deficiencies in MDSD processes
capabilities

3) Extremely quick code generation

Future Research

The road to success is always under construction. Model-Driven Software
Development reflects the possibilities that lie ahead for the software industry. MDSD
shows potential, but will encounter huge resistance. It will be interesting to witness the
direct correlation between MDSD tools maturity versus industry adoption. Ifthe tools
can develop more fully and the knowledge can become more conventional to IT, then

MDSD will alter the face of the software industry.

20

www.manaraa.com

ANNOTATED BIBLIOGRAPHY

Balmelli, L. (2006) Model-Driven Systems Development. Retrieved Dec 27, 20006,
from http://www.research.ibm.com/journal/sj/453/balmelli.html
Discusses the IBM approach to MDSD, which seems to make a lot of
sense to me. Called Rational Unified Process for Systems Engineering (RUP SE).
Probably used for Applied Case Study. This article seemed to “speak™ to me
more than others on process. (5%)

Bettin, Jorn. (2002) Measuring the Potential of Domain-Specific Modelling Techniques.
Retrieved Dec 2, 2006, from
http://www.dsmforum.org/events/DSVL02/bettin.pdf

The article addresses the metrics of MDSD directly compared to a fully
“manual” software development and with “traditional” UML-based software
development. These metrics will be highly useful for the Critical Analysis section
of the Thesis. The example metrics seem valid for the small example, but would
be concerned how they translate to other applications. (4*)

Bettin, Jorn. (2004). Model Driven Transformation?. MDSD Introduction. Retrieved
Dec 30, 2006. http://www.modeldriventransformation.com/

The first half of this article is good with terminology, but the second half
is not relevant. Terminology and approaches in this domain space are used very
interchangeably. Due to the theoretical nature, some of the articles are confusing
in respect to what arena they are trying to address. I think a terminology or
glossary will be necessary in order to clarify concepts more precisely. At
minimum, a section is needed to discuss the various approaches, distinctions, and
their differentiations. (MDA,MDD, MDSD, Software Factories). Many of Jorn’s
articles are repeats (3*)

Bettin, Jorn. (2004) What is MDSD? MDSD Introduction. Retrieved Dec 4, 2006,
from http://www.mdsd.info/mdsd_cm/page.php?page=intro
Might be good reference to cite for a glossary in the paper if one is
needed. This series of websites from Jorn Bettin are all excerpts from his
textbook Model-Driven Software Development. They provide good basis, but the
textbook is more comprehensive. Probably use the text though, better fully
compiled source. (2%)

Bettin, Jorn. (2004) Model-Driven Software Development: An emerging paradigm for
Industrialized Software Asset Development. Retrieved Dec 1, 2006,
from http://www.softmetaware.com/mdsd-and-isad.pdf
This article presents some of the reasons that MDSD is becoming an
emergent technology. The “why is this important” perspective. Again, it’s
excerpts from his textbook. It provides a good foundation for the MDSD

21

www.manaraa.com

http://www.research.ibm.com/journal/sj/453/balmelli.html
http://www.dsmforum.org/events/DSVL02/bettin.pdf
http://www.modeldriventransformation.com/
http://www.mdsd.info/mdsd_cm/page.php?page=intro
http://www.softmetaware.com/mdsd-and-isad.pdf

approach. It also looks at the economics of software development. Very nice
reference articles on metrics of software. Has a nice reference diagram for the
Traditional-to-MDSD transition (pp. 22) (3%*)

Bettin, Jorn. (2004) Model-Driven Software Development Activities. The Process View of
an MDSD Project. Retrieved Dec 6, 2006, from
http://www.softmetaware.com/mdsd-process.pdf

This article provides a high level overview of the essential software design
and development activities in sequential order. I will utilize for the applied study.

(3%)

Cook, Steve. (2004) Model-Driven Architecture and Domain Specific Modeling.
Retrieved Nov 11, 2006, from http://www.bptrends.com/publicationfiles/04-
04%20COL%20MDSD%20Frankel%20-%20Bettin%20-
%20Cook.pdfftsearch="model%20driven%20so ftware%20development%20isbn'

The article is primarily grounded from an MDA perspective, but branches
out to embrace the MDSD approach. It discussed the need for more generators.
Discusses some of the economic aspects of future MDSD growth. It also contains
an excerpt from Jorn Bettin’s textbook and replicated from the Softmetaware.com

articles above. The section from Steve Cook’s response article provides a good
counter-discussion to MDSD and MDA. (3%*)

Eclipse. Eclipse MDDi Project. (2006) Eclipse Model Driven Development Integration.
The Eclipse Foundation. Retrieved Dec 17, 2006, from
http://www.eclipse.org/proposals/eclipse-mddi/

This article seemed overwhelming at first. It describes the integration of
model driven technologies into a single platform. The project is still developing,
so a bit evolving. (3*)

Hailpern, B., Tarr, P. (2006) Model-driven development: The good, the bad and the ugly.
Retrieved Jan 12, 2006, from
http://www.research.ibm.com/journal/sj/453/hailpern.html

This article presents an overview of MDD, and then does an analysis. A
very concise article on the warts, stigma, and challenges for MDD. (5*)

Mellor S, Clark A, Futagami, T. (2003) Model-Driven Development. Retrieved Dec 2,
2006, from http://doi.ieeecomputersociety.org/10.1109/MS.2003.1231145
Article discusses pros and cons of models/modelers, and model
transformations (2*)

OOPSLA Conference 2004. Model-Driven Software Development: Introduction & Best
Practices. (n.d.). Retrieved Nov 12, 2006, from
http://www.oopsla.org/2004/ShowEvent.do?id=101

Throughout all of the research, the two names below continued to be
published and referenced by other authors as authority:
“Jorn Bettin, SoftMetaWare: Jorn Bettin is a software consultant with a special
interest in techniques to optimise the productivity of software development teams

22

www.manaraa.com

http://www.softmetaware.com/mdsd-process.pdf
http://www.bptrends.com/publicationfiles/04-
http://www.eclipse.org/proposals/eclipse-mddi/
http://www.research.ibm.com/journal/sj/453/hailpern.html
http://doi.ieeecomputersociety.org/10.1109/MS.2003.1231145
http://www.oopsla.org/2004/ShowEvent.do?id=101

and in designing large-scale component systems. Prior to co-founding
SoftMetaWare in 2002 he spent 13 years as a consultant and mentor in the IT
industry in Germany, New Zealand, and Australia. He has implemented
automated, model-driven development in several software organisations, has
worked in methodology leadership roles in an IBM product development lab, and
enjoys leading international teams dispersed across several locations.”

“Markus Voelter, Independent Consultant: Markus works as an independent
consultant on software technology and engineering. He focuses on the
architecture of large, distributed systems. Over the last years, Markus has worked
on several model-driven software development projects in the enterprise and
embedded world. Examples include banking, automotive and radio astronomy.
Markus is a regular speaker at the relevant national and international conferences.
For example, he has presented at ECOOP, OOP, OOPSLA, ACCU. Markus is the
(co-)author of several patterns, many magazine articles, as well as Wiley's "Server
Component Patterns" book” (1%*)

SEI Software Engineering Institute. (2006). Model Driven Architecture MDA. Carnegie
Mellon University, 19 January, 2006. Author: G
Lewis.http://www.sei.cmu.edu/isis/guide/technologies/mda.htm

Good quote to show the relationship between MDA, MDD, and MDSD.
This article is a concise source for MDA approach, definitions and
differentiations. But only MDA. It quickly runs through the MDA background
and standards. This will be useful for the MDA foundational aspects. The article
discusses some of the MDA restrictions, immaturity, and future. It’s a good
counter discussion. (3%)

Stahl, T., & Volter, M. (2006). Model-Driven Software Development: Technology,
Engineering, Management. Hoboken, NJ: John Wiley & Sons, Inc..

This reference text addresses the entire practice of MDSD. Since the
concepts are relatively new, section 1 discusses the theories behind the MDSD
approach. The authors seem to make it a point to differentiate and separate
themselves from the CASE tools and Model Driven Architecture from OMG.
The second section goes into a deep dive on the specifics of MDSD models and
generation. This section is very architecture framework in nature. This should be
the most useful area as it relates to the case study. It appears that the authors
assume the average IT professional has access to model generators and code
generators in order to show their ideas in action. That is simply not reality and
could prove to be a roadblock for the applied study. The final two sections won’t
be utilized much. Section 3 focuses on the software development lifecycle this is
needed to support MDSD techniques. The final section discusses management
required for MDSD, such as pilot programs, roles, and organizational structure.
This text might be too focused on building “the perfect architecture” and theories.
It assumes a thorough understanding of MDA approach and standards, as well as
UML notation. This is a bit ironic since the authors try so hard to differentiate
MDSD from MDA. (5%)

Uhl, Axel. (2003) Model Driven Architecture is Ready for Prime Time. IEEE Software.

23

www.manaraa.com

Retrieved Nov 30, 2006 from http://computer.org/sofiware

This article discusses the advancements and maturity in software
engineering. MDA is the next logical step in the maturity cycle, as well as
counterpoint anchored more in today’s reality rather than theoreticals. (4*)

Wikipedia. (2006) Model-Driven Architecture. Wikimedia Foundation, Inc.,
Retrieved Dec 17, 2006, from
http://en.wikipedia.org/wiki/Model Driven.Architecture
This article gives good context for the MDA approach as a building block
toward MDSD. Good definition. (2*)

24

www.manharaa.com

http://computer.org/software
http://en.wikipedia.org/wiki/Model_Driven.Architecture

REFERENCE LIST

Balmelli, L. (2006) Model-Driven Systems Development. Retrieved Dec 27, 20006,
from http://www.research.ibm.com/journal/sj/453/balmelli.html

Bettin, Jorn. (2002) Measuring the Potential of Domain-Specific Modelling Techniques.
Retrieved Dec 2, 2006, from
http://www.dsmforum.org/events/DSVL02/bettin.pdf

Bettin, Jorn. (2004a) What is MDSD? MDSD Introduction. Retrieved Dec 4, 2006,
from http://www.mdsd.info/mdsd _cm/page.php?page=intro

Bettin, Jorn. (2004b) Model-Driven Software Development Activities. Retrieved Dec 1,
2006, from http://www.softmetaware.com/mdsd-process.pdf

Bettin, Jorn. (2004c) Model-Driven Software Development: An emerging paradigm for
Industrialized Software Asset Development. Retrieved Dec 1, 2006,
from http://www.softmetaware.com/mdsd-and-isad.pdf

Cook, Steve. (2004) Model-Driven Architecture and Domain Specific Modeling.
Retrieved Nov 11, 2006, from http://www.bptrends.com/publicationfiles/04-
04%20COL%20MDSD%?20Frankel%20-%20Bettin%20-
%20Cook.pdf#fsearch="model%?20driven%20so fiware%20development%20isbn'

Children’s Ministry. (2004) First United Methodist Church in Colorado Springs Online.
Retrieved Nov 4, 2006, from http://fumc-cs.org/education/kcity.html.

Eclipse. Eclipse MDDi Project. (2006) Eclipse Model Driven Development Integration.
The Eclipse Foundation. Retrieved Dec 17, 2006, from
http://www.eclipse.org/proposals/eclipse-mddi/

Hailpern B., Tarr P. (2006) Model-driven development: The good, the bad and the ugly.
Retrieved Jan 12, 2006, from
http://www.research.ibm.com/journal/sj/453/hailpern.html

OOPSLA Conference 2004. Model-Driven Software Development: Introduction & Best
Practices. (n.d.). Retrieved Nov 12, 2006, from
http://www.oopsla.org/2004/ShowEvent.do?id=101

Middleware. The Middleware Company. (2003). Model Driven Development for J2EE
Utilizing a Model Driven Architecture (MDA) Approach — Productivity Analysis.
Retrieved Dec 3, 2006.
http://www.compuware.com/dI/MDAComparisonTMCfinal.pdf

25

www.manaraa.com

http://www.research.ibm.com/journal/sj/453/balmelli.html
http://www.dsmforum.org/events/DSVL02/bettin.pdf
http://www.mdsd.info/mdsd_cm/page.php?page=intro
http://www.softmetaware.com/mdsd-process.pdf
http://www.softmetaware.com/mdsd-and-isad.pdf
http://www.bptrends.com/publicationfiles/04-
http://fumc-cs.org/education/kcity.html
http://www.eclipse.org/proposals/eclipse-mddi/
http://www.research.ibm.com/journal/sj/453/hailpern.html
http://www.oopsla.org/2004/ShowEvent.do?id=101
http://www.compuware.com/dl/MDAComparisonTMCfinal.pdf

Mellor S, Clark A, Futagami, T. (2003) Model-Driven Development. Retrieved Dec 2,
2006, from http://doi.ieeecomputersociety.org/10.1109/MS.2003.1231145

SEI Software Engineering Institute. (2006). Model Driven Architecture MDA. Carnegie
Mellon University, 19 January, 2006. Author: G
Lewis.http://www.sei.cmu.edu/isis/guide/technologies/mda.htm

Stahl, T., & Volter, M. (2006). Model-Driven Software Development: Technology,
Engineering, Management. Hoboken, NJ: John Wiley & Sons, Inc..

Volter, M, Bettin, J. (2004) Patterns for Model-Driven Software Development.
Retrieved Nov 17, 2006, from http://www.voelter.de/data/pub/MDDPatterns.pdf

Wikipedia. (2006) Model-Driven Architecture. Wikimedia Foundation, Inc.,
Retrieved Dec 17, 2006, from
http://en.wikipedia.org/wiki/Model Driven.Architecture

26

www.manharaa.com

http://doi.ieeecomputersociety.org/10.1109/MS.2003.1231145
http://www.voelter.de/data/pub/MDDPatterns.pdf
http://en.wikipedia.org/wiki/Model_Driven.Architecture

GLOSSARY

Application Engineering. MDSD models for the actual platform and system context
including PSM and deployment specifications

Constituent. A term used for a child who is not yet confirmed and not a church member.

Domain. A bounded area of knowledge. Domains can relate to knowledge about vertical
industries (business domains and also to software implementation technologies
(technical domains).

Domain Engineering. MDSD models for the overall business context including
analysis, design, and domain specific concepts.

Domain-Specific Language (DSL). MDSD template modeling language, semantics,
and syntax used for expressing key aspects of the domain.

Meta Object Facility (MOF). An approach adopted by OMG that is a UML metamodel,
or the model that describes the UML itself

Model Driven Development (MDD). A term used interchangeably with MDSD/MDA.

Model Driven Architecture (MDA). Adopted by the Object Management Group
(OMG) in 2001. MDA is an approach to software development that provides a set
of guidelines for structuring specifications expressed as models. It is model
driven because it provides a means for using models to direct the course of
understanding, design, construction, and modification. (Wikipedia, 2006).

Object Constraint Language (OCL). A language used for declaring and describing
UML model rules.

Query/Views/Transformations (QVT).A standard developed by OMG, compatible with
MDA, to process model transformations from source to target.

Platform Independent Model (PIM). The model describing the business logic,
undiluted by technical concerns.

Platform Specific Model (PSM). The model used to describe the actual platform
implementation details.

Unified Modeling Language (UML). An object modeling language and specification
often utilized in software engineering.

XML Metadata interchange (XMI). A standard for exchanging metadata models and

information using XML as the basis. Allows for interoperability between models.

27

www.manaraa.com

APPENDIX A — MDSD APPROACH

Table 5: MDSD - RUP SE approach (Balmelli, 2006)
RUP SE Steps

Overall Process

1) Models: RUP SE has four types of architectural models: Context, Analysis,
Design, and Implementation. Each represents a more granular drill down of
the system development. (IBM, 2006).

2) Viewpoints: A viewpoint is a subset of the architecture model that addresses a
certain set of engineering concepts (IBM, 2006).

3) Views: Views are the intersections between Models and Viewpoints. Views
contain the artifacts to fulfill the viewpoint. (IBM, 2006).

4) Each model and viewpoint is a separate diagram that is comprised of view
artifacts.

5) Each subsequent granularity level had direct built-in relationships maintained
from the parent diagram.

Domain Engineering Process

1) The context level model is the top level model which shows the entire system
as a single entity and its external entities.

2) The analysis model level represents the architectural perspective of the
system, the internal elements, and subsystems.

3) The design level shows the actual system’s software specifications. This is
most closely related to traditional UML modeling. The analysis and design
levels represent the Platform Independent Model (PIM).

Application Engineering Process
1) The implementation model level which refines the PIM into the Platform
Specific Model (PSM) with the modeling of chosen domain technologies.

Code Generation Process

1) Generate the code from PSM - Rational SA will perform the model-to-text
code generation.

2) Manual code — Create any hand crafted code that cannot be represented in
models.

3) Iterate over models to refine granularity and refactor code changes.

28

www.manaraa.com

Table 6: MDSD - Agile approach (Bettin, 2004b) (Stahl, Voelter, 2006)

29

www.manharaa.com

Agile Steps

Overall Process

1)

2)

3)

4)

If possible, extract the existing infrastructure from a running application or a
prototype as a baseline.

Develop the initial infrastructure with one initial application simultaneously
(Iterative Dual-Track Development). The development will switch focus
between infrastructure (normally one step ahead) and domain-specific
application development.

Validate each iteration, refinement, and application against the metamodel and
models.

With every step, elaborate on the domain-specific knowledge and modeling
and generate code to validate results. When necessary, re-extract the platform
infrastructure.

Domain Engineering Process

1y

2)

3)

4)

Domain analysis and design - Develop the product platform model and
implement it into metamodel tool. Implement all domain specific notation
and constraints into the metamodel.

DSL - Build the domain-specific language (DSL). The DSL is a template,
and resembles pseudo-code by nature. It acts as the reference model standard
for all classes within the domain. This piece is probably the most critical for
Model-Driven Software Development. It will later be validated and iterated
with an actual reference implementation.

PIM - Refine the domain-specific metamodel into an architecture-centric
model. Normally this is specified in UML and OO terms. This model
encompasses some of the core architectural concepts and stereotypes that are
required within the system. This model also represents the Platform
Independent Model (PIM) and is a technology-independent representation of
layered architecture.

Transformers — Create generator templates that will convert the UML/XMI to
skeleton implementation model.

Application Engineering Process

1)

2)

3)
4)

PSM - Transform the PIM into a Platform Specific Model (PSM) through the
use of DSL, Transformers and rules. This model will include the some
specific technology entities like J2EE or .NET. In addition to target platform
UML, it includes configuration files, deployment information, and other
domain specific artifacts.

Technical Subdomains - Partition the system into distinct technical
subdomains to keep the models simple. Make existing or legacy system
integrations separate technical subdomains to achieve model-driven
integration.

Code Separation - Segregate generated code from hand-crafted code in models
Interfaces - Model fully externalized interface definitions. This support
component based architecture.

Code.Generation Process

1)
2)

3)

Generate the code from PSM — This step is purely mechanical. No additional
mformation is included.
Manual code — Create any hand crafted code that cannot be represented in

MDSD or DSL. WWw.manaraa.c(

hm

Reincarnate as many code changes back into the model as soon as possible.

31

www.manharaa.com

o AJLb

APPENDIX B — CASE STUDY NARRATIVE

Business Problem

First United Methodist Church was founded as the first church in Colorado Springs in
1871. The Children’s Ministry is primarily focused on religious development of children
who range in grades from kindergarten through sixth.

The following excerpt from FUMC website provides information on the mission of the
Children’s Ministry.

FIRST UNITED METHODIST CHURCH - CHILDREN’S MINISTRY

First United Methodist Church has a long-term vision of transformed lives through children's Sunday
school. We want our children to experience the love of Christ, to embrace Christ personally, and to
develop into young adults with a mature and solid faith. To do this, we are providing a fun and purposeful
learning environment that will help them remember their Sunday school experience all the days of their
lives. Studies have shown that children retain better what they learn when they experience it in multiple
ways.

First United Methodist Church is investing in a multi-dimensional learning environment for our kids. Your
child will learn the principles of the Christian faith through art, music & movement, cooking, drama, video,
puppets, stories, science, computers, and yes - even games! (Children’s Ministry, 2004)

FUMC Children’s Ministry has experienced turnover in leadership over the past five
years. During that turnover, much of the information concerning the constituency has
been lost. In addition, many of the processes and procedures have been lost, revamped,
or pieced together. The ministry has managed most of their data needs through the use of
manual processes, spreadsheets, and word documents. This disconnected approach is
cumbersome and difficult to process data efficiently. It often takes hours to pull together
basic information and reporting. They need a solution for managing administrative
information.

User Goals/Purpose

The new Director, Cheryl Ledford, has realized the need to standardize and automate
portions of the ministry. She is looking to revitalize the Children’s Ministry through
automation. Her vision is to reinstate the constituency information, improve the
attendance, and begin a curriculum program leading to confirmation. As part of that
vision, she is in need of three main tracking systems: children, attendance, and courses.
Automation would result in providing new opportunities to provide superior services to
children, parents, volunteers, and teachers. The primary goals would be higher data
visibility and accessibility, management of information, and data integration with other
church software.

32

www.manaraa.com

Business Impact

By providing a single, integrated tracking system, the ministry can streamline processes
and provide more accurate information. Ultimately they will begin to grow the children’s
department within the church. Additionally, by having the information more accessible,
FUMC should have the ability for timely and concise reporting.

Vision — Approaches/Solutions

Once the basic system requirements and design work are complete, FUMC will be faced
with the opportunity to evaluate alternate paths to complete this project. The Buy versus
Build options should need to be considered and compared against delivery speed.

There are commercial software packages on the market that could track this information.
Preliminary software investigations have determined that FellowshipOne
(http://www.fellowshipone.com) or Church Windows (http://www.churchwindows.com)
may represent good buy options.

The system rollout will be implemented in multiple phases.

- Phase 1 will be a basic proof of concept to demonstrate the basic system needs
and software layers. Additionally this phase acts as the proof of concept for
Model-Driven Software Development using the constituent data.

- Phase 2 will continue build out the architectural layers from Phase 1, to embody
and more robust system.

- Phase 3 will include additional layers for security processing and possible barcode
scanning for check in.

- Phase 4 will provide a layer for processing with interface with other church
software packages.

33

www.manaraa.com

(http://www.fellowshipone.com)
(http://www.churchwindows.com)

APPENDIX C — CASE STUDY EXHIBITS

Business Models

Figure 5: Entity Relationship Diagram

Church
funds [1:n]
establishes [1:n]
— Ministry organizes [1n] ‘ gProgramy/Curriculum
|
has [1:n] includes [0:n]
has [0:n]
attends [M:N]
Constituent =~ p———— Church Activity
has [1:n]
. tracks [1:n] Event Schedule
T has a [1:M] Course
involve [M:N]
—q Person Attendance
teaches [M:N]
:A LS
isa[1:M]
34

www.manharaa.com

Data Models

Figure 6: Logical Data Model
group

grouplD
group_name m
group_desc

oariD £

Curr_name
Jid|

curr_desc

) |gr0upID activityID =
personIl ackivity _narms
activity_desc ;I

personlD

phone_num
phone_type

constituentID

personlD

dob

school

grade

allergies

baptism_dt

medical_release

medical_infa

patentl_PID
parentz_PID 1

OO
assist_PID -
pref _grade
pref_age_gro
pref_activity_ ™ |

COUFSE_nane
currll bl

schedn B

eventID
b

beg_DT

schedID
personih
attendFlg

Figure 7: Physical Data Model - Constituent related tables

E person: Table
| Field Mame | Datatvpe | Diescription
Z [FID Autohumber The ke Field For the plawver table
alternatelD Mumber The internal number associated with person. Mormally quick reference key and well known ta the person
First_name Text The persons First name
last_name Text The persons last name
P | gender Text The persons gender]
addrID Mumber =
on cnn abDle
1 Field Name | Daka Type | Descripkion
L) Mumber the ke Field For the constituent table 1:1 relationship with person
_ |dob DakefTime The child's date of birth
_|school Texk The child's academic school
_ larade Text The child's academic grade in school
_ | allergies Texk The child's known allergies
__|baptism_dt DatefTinne The child's baptism date. Presence indicates "v", absence indicated "N"
_ | confirm_dt Text
__|medical_release Text The child's medical release Form is on File - ¥/M flag
_ | special_notes Texk Any special nokes concerning constituents
__ |parentl_PID Murnber The child's parent
__|parentz_PID Mumber The child's parent

B address: Table

Field Mame | Data Tvpe | Description
7 [=[g {n] AuboMumber The ke field For the address table
sanlD MNumber the person id associated with this address
addr_1 Texk
addr_2 Texk
ciky Texk
skate Text
zip Texk

Field Mame | Data Type | Descripkion

MNumber Person ID - Foreign ke
phone_num Text Phone number - Foreign kew
phore_tvpe Text

35

www.manaraa.com

User Experience Mockups

Figure 8: Ul Mockup - Main Menu

i First United Methodist Church -0 x|

FUMC Children's Ministry

Tracking

People

Attendance

Events

Reports

FIRST UNITED ™=
METHODIST CHURCH

COLORADD SPRINGE, COLORADD

36

www.manharaa.com

Figure 9: Ul Mockup - Constituent Screen

37

www.manharaa.com

APPENDIX D — MDSD MODEL EXHIBITS

RUP SE Context Models

Figure 10: Use Case - Overall Context
Children’s Ministry Scheduling/Tracking System

Schedule Events

Actors Architecturally Significant Use Cases
%
43
X
Administrator

Establish
Curriculum

Schedule Resources

Pracess Reports

38

www.manharaa.com

Figure 11: Use Case - Manage <<Constituent>>
Administrator System

. [} subimit
input search information lookup entity

Exists?

fa true

Glspiar ‘does not exist’ messagej Getﬁwe aﬂﬂtyj

39

www.manharaa.com

Figure 12: Analysis Diagram: Manage Constituent — Class Participants

Manage Constituent — Class Participants

atterns
Child Lockup
MVC
! Usess
: “ -:-cgnmy):
_________________ Fecantrol> Constituent
ConstituentControl SuSaEy
- I — ‘Y+creataChildi)
1 - +retrigveChild()
1 +manageChild{} +updateChild()
1 +daleteChild()
1
<<hpundany==> :
ConstituentForm ausesk 1
e]
+display()
Figure 13: Analysis Diagram: Manage Constituent — Sequence Flow
Manage Constituent - Flow
| search | | 1 1
] | 1 1
| | | 1 1
| | | I |
| | ot found | I I
|) I |
| | | clear display I I
| | |
| | prompt for data _: [1
——————— p SRmCEe e e e | 1
:% add | I 1 1
_— I |
| | manageChild | I I
|) | |
| | | createChild() 1
| | I + >
| | | 1 1
| | | I |
| | | 1 1
| | | I |
| | found | 1 1
|) I |
I I | display 1 1
1
| | prompt for data | 1 1
e S p IRRCE e o B e e 4 1
| | | 1 1
| | | I |
| | | 1 1
| | | I |
| | | 1 1
| | | I |
| | | 1 1
| | | I |
| save | I 1 1
—_ -
| | managaChild | : :
| 1 1
| | | updateChild() 1
| | L 1 o
| | | 1 1
| | | I |
| | | I |
| | | I |
| | | 1 1
| | | 1 1
| dalete | | 1 1
| | manageaChild : : :
N
: | | dsleieﬂlﬂl!!l(} :
| | } 4 ¥
oz et i 3 | Y |
40

www.manharaa.com

Figure 14: PIM - Presentation Layer

Software Models

cd: F‘resentationLa\,-er)

MainMenu

PeopleForm

1

1

FUMCController PeopleController

e

ManagerFactonys

+gethlanager(l IMansger

Constituent

-peersonlint
-dok:Date
-zchoal: String
-grade: String
-allergies: String
-baptism Ot Date
-confirm Dt Date
-medF eleaseFlg Char
-riotes: String
-parent!D 1 :int
-parentlD 2int

+getP ersonlDint
+setPerson Do _personlD:int): void
+getDob(tDate
+setDob_dob:Date) woid

+get= chool (O String
+setSchool_school: String) void
+getGrade]): String
+aetGradegrade: String):voicd
+getllergies(1 String
+zetallerdgies_allerdie s StringT woid
+getB aptismDi()Date

+zetBapti s Dt_baptistn Dt Date): woidd
+getConfirmDi D ate
+zetConfirmDt_confirm Dt Date void
+gethl ote =) String

+zethl otesnote s Steing):void
+gettedR eleazeF g Char

+getP arentlC 0 xint

+zetParent!DF [parenti D int) voicd
+getP arentlD 20 xint
+zetParent| D20 parent| D2 int) voicd

+C onstituentvoid
+validatec hildiic hild: C onstituent): waoid
+dizplayC hild (0 hild: S onstituentrvoid
+TaString CrString

+zethedR eleaseF gl _medReleasel g Chat): woid

41

www.manaraa.com

Figure 15: PIM - Business Layer

cd: BuzineszzLaver)

ManagerFactory == intetface ==
IManager

s T

+gettdanagert IManager

== intetface ==
IConstituentMgr

+ethlanager(woid
+addC ongtituent():void
+vienC onstituent(Tvoid
+deleteC onstituent(rvoid
+updat eC ongituent () void

I

|

L .

IConstituentMgr .

I .
ConstituentiMgrinpl

+et S ervice) void
+addCongituent): woid
+viewnConztituentTwoid
+deleteC onstituent(r void
+Updat eCondituent O woid

42

www.manharaa.com

Figure 16: PIM - Data Access Layer

cd: Data.&D:ESSLa'fer)

Factory

== intetface ==

ISenvice

+oetService | Service

b

== intetface ==
IConstituentDB Svc

+creste Condituent O Boolean
+retreiveC ongituent O Constituent
+Hupdat eCondituent O.Baolean
+deleteC onstituent(T Boolean

o I

1
IConstituentSvc .

ConsitituentDB Svclnpl

+ConstituentDESwd mipld) woid
+creste Congituent O Booleat
+retrieveC ongituent O Constituent
+Hupdat eCongituent O:Boolean
+deleteC onstituent(T Boolean

A

Sy=tem.Data.OleDB

43

www.manaraa.com

Figure 17: PIM - Domain Layer

cd: DomainLayer

Address

-personlCrint
gl String
-addr2: String
-city: String
-state: String
-zipe String

+getP erzonl D (int
+zetP erson| D_personl L int) void
+getAddr 2 String

+zet o 20 _acclr 2: Stri ng) void
+getAddr (T String

+zet e (_addrd : String) void
+getZipIString

+zet Tl _zip: String): void
+getCity () String
+zetCiby(_city: String): woid
+get=tatel): String

+zetState (state: String)woid
+Address();void
+validatedddress(n String

Phone

-personlCrint
-phane M um: int
-phore Type: String

+getP erzonl D (int

+zetP erson| D_personl D:int) void

+getP honeMum (rint

+zetP honet um (_phoneMum:int):void
+getP honeT ype(TString

+zetP honeT ype(_phoneType: String):void
+Phanel):void

+valicdateP honet String

Erail

-personlCrint
-ernailAddr String
-emailT ype String

+etP ersonl D (int

+zetP erson| D _personlDint):vaoid
+etE mail Acddr(): String

+zetE maildddr]_emaildddr String):void
+etE mail Type () String
+zetEmailTypel_emailT ype: String): void
+E tm il (1 void

+validateEmail (1 String

Person Group
-PID:int -grouplCrint
-altiCint -grauph st String
~firsti ame: String -groupDesc String
v
+zetEroupl D (_groupl D int):vaid
+getP 1D Tint +etE rouph s e String
+zetP1D_PIC:ind): void +zetrouph amel_grouphame: String): void
+get a0 Crint +et roupD esc): String
+zet 2l (D _altiDrint):void +zetGroupD escl_groupDesc: String):void
+getFirstMam el String +G poup (Tvoid
+zetFirsiame _firsthame: String):void +validateGroup (1 String
+getla st am et String
+zetlagiMamel_lagiame: String):woid
+getG ender() Char
+zetGender_gender: Char Tvoid
+Personl);void <'.']
+TaString (1 String Assistant
-azs=tPl Dnint
E lr {dlizcritinztor] -perfradecint
-perfigesint
Constituent -perfictivity int
-personlDiint -periSubjectint
-tloh:Date +etissistPID(Lint
-school: String +zetAssistP|D (_assistP 1DuintTvoid
-grade: String +getP erfGrade(int
-allergies: String +zetP erfGrade(_periG radeint) void
-haptizm Ot D ate +getP erfdgel int
-confirm Dt Date +zetP erfdgel_perfAgeint vaid
-medReleaseFly Char +getP erflatisity(rint
-notes: String +zetP ertactivity(_perfactivity:int) void
-parentiD:int +oetP erSubject(vint
-parertiD2:int +zetP erfSubject(_perfSubjectint) void

+getP erzonlD (rint
+setPerzon|Di_perzonlCrint) void
+yetDok(1Date

+setDobi_dok: Date 1void

+getS chool () String
+setSchool(_school: String): woid
+yetG rade) String
+setGrade_grade: String):vaid
+getdllergies(rString
+zetallergies(_allergies Stringl void
+getB aptizm D) Date

+zetBaptismDt (_baptizm Dt:Date):void
+getConfirm Dt Date

+zetConfirmDt (_confirmDt: Datelvoid
et ote s String

+zethlates(_notes: String):void
+gettdedReleaseF g Char

+zethledR eleazsF lg_medReleazeF g Char)void
+getP anertl D (int

+zetParent| D (_parenti D :int):void
+getP anertlD2()int

+zetParent| D2 (_parent!D2:int):void
+Constituent(T void
+validateChild(iChild: Constituent): void
+displayChild (Child: Constituent T void
+ToString (1 String

+&z5i stant(rvoid
+validatedssistant (1 String
+T oString (1 String

44

www.manaraa.com

APPENDIX E — CASE STUDY METRICS

Effort Tracking
Tasks Subtask Date Actual
Analysis
Interview 11/1/2006 0.75
Context 11/1/2006 1
Requirements 11/3/2006 1
Traditional UML and C# coding approach
Modeling
Use Cases 11/3/2006 1
Use Cases 12/18/2006 1
Use Cases 1/18/2007 1
Analysis diagrams 1/21/2007 1
Analysis diagrams 1/29/2007 2
Analysis diagrams 1/30/2007 2
Analysis diagrams 1/31/2007 1.5
Design diagrams 2/1/2007 1.5
Design diagrams 2/2/2007 1
Code Coding 2/3/2007 3
Coding 2/3/2007 3
Coding 2/3/2007 2.5
Coding 2/3/2007 1.25 | Total code = 12.25
complete with initial draft
Coding 2/3/2007 2.5 | code for constituent
Total 24.25
MDSD approach
Modeling | Use Cases 2/5/2007 1
Use Cases 2/6/2007 1
Use Cases 2/7/2007 0.5
Analysis diagrams 2/7/2007 2
Analysis diagrams 2/8/2007 1
Design diagrams 2/12/2007 2
Design diagrams 2/13/2007 1
Design diagrams 2/15/2007 1
shell code stubs only for
all methods, minimal
documentation with
documentation blocks
Code Code Generation 2/16/2007 1.5
estimated 25% code
complete with domain
Total 11 | object generation

www.manaraa.com

	Regis University
	ePublications at Regis University
	Spring 2007

	Model-Driven Software Development
	Susan Minton
	Recommended Citation

	Microsoft Word - 463AB24E-17D7-080EE4.doc

